Hamstrings are most susceptible to injury during the late swing phase of sprinting

Elizabeth S Chumanov,1 Anthony G Schache,2 Bryan C Heiderscheit,1 Darryl G Thelen3

It is well recognised that the hamstrings are susceptible to acute strain injury during high-speed running. However, the particular phase of the sprinting gait cycle at which hamstring injury occurs remains a debated topic. Video footage and athlete anecdotes have contributed to the discussion, but do not provide sufficient temporal resolution to fully answer the question. In this paper, we briefly review: (A) biomechanical data obtained from healthy athletes; (B) case studies of injuries during biomechanical experiments; and (C) clinical outcomes from intervention studies. We believe all of these support the premise that late swing phase is the likely time when the biarticular hamstrings are most vulnerable to injury.

Early sprinting (ie, high-speed running) biomechanics research showed that during initial stance phase, a sprinter experiences large hip extension and knee flexion moments, leading to the proposition that contact loads may contribute to hamstring injury risk.1 While hip extension and knee flexion moments are an important factor to consider, it is not possible to discern the biomechanical state (ie, stretch, force and work) of individual muscles from net joint moments alone.2 Recent research, using biomechanical simulations of sprinting, has shown that the biarticular hamstrings are actually shortening throughout stance,3 and that stance phase hamstring loading does not vary considerably as a sprinting athlete approaches near-maximal speeds.4 In contrast, the biarticular hamstrings clearly undergo an active lengthening contraction during the second half of swing, reaching peak stretch just prior to footstrike.3 While terminal swing does represent a time in the sprinting gait cycle where neither limb is in contact with the ground (ie, flight phase with no contact loads), the hamstrings are absorbing kinetic energy from the swing limb. The amount of kinetic energy absorbed in the limb is proportional to the running speed squared, such that the negative work done (energy absorbed) by the hamstrings increases substantially with running speed.5 In addition, research in animal models has shown that active lengthening contractions cause muscle damage, and that the degree of damage is more sensitive to the amount of active mechanical strain and negative work done by the muscle than it is to the amount of force experienced by the muscle.6 7 Thus, hamstring mechanics in the late swing phase of sprinting are consistent with conditions that are likely to induce muscle injury.

The argument for terminal swing is further substantiated by the findings from two independent case studies of biomechanical data collected when running athletes incurred acute hamstring strain injuries. Despite distinctly different experimental conditions, both studies came to the same conclusion: that the stimulus for the injury most likely occurred in the late swing phase.8 9

The main implication from the above-mentioned research studies is that interventions for preventing hamstring strain injuries should be targeted towards exercises that involve active lengthening (eccentric) contractions. To this end, there is evidence demonstrating that not only are eccentric exercises effective in reducing hamstring strain injury incidence,10–13 but that they are also likely to be more effective than concentric exercises.14 If we consider that injury prevention programs seek to replicate the musculotendons demands during the mechanism of injury, the apparent success of eccentric training provides indirect, but arguably important support for the late swing phase being the likely time of injury.

We, therefore, conclude that the collective biomechanical and clinical evidence overwhelmingly supports the premise that the hamstrings are most susceptible to injury in the late swing phase of the sprinting gait cycle. While this debate may seem to be an academic exercise, we believe the answer is relevant for scientifically establishing injury prevention and rehabilitation programs that can most effectively mitigate injury risk.

Contributors All authors contributed significantly to this paper by formulating the initial ideas, writing and editing of the manuscript.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES


Hamstrings are most susceptible to injury during the late swing phase of sprinting


Br J Sports Med published online July 4, 2011
doi: 10.1136/bjsports-2011-090176

Updated information and services can be found at:
http://bjsm.bmj.com/content/early/2011/07/04/bjsports-2011-090176.full.html

These include:

References
This article cites 13 articles, 2 of which can be accessed free at:
http://bjsm.bmj.com/content/early/2011/07/04/bjsports-2011-090176.full.html#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

Advance online articles have been peer reviewed, accepted for publication, edited and typeset, but have not not yet appeared in the paper journal. Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/