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Abstract—Dynamic simulations of movement allow one to 

study neuromuscular coordination, analyze athletic performance, 
and estimate internal loading of the musculoskeletal system. 
Simulations can also be used to identify the sources of 
pathological movement and establish a scientific basis for 
treatment planning. We have developed a freely available, open-
source software system (OpenSim) that lets users develop models 
of musculoskeletal structures and create dynamic simulations of 
a wide variety of movements. We are using this system to 
simulate the dynamics of individuals with pathological gait and 
to explore the biomechanical effects of treatments. OpenSim 
provides a platform on which the biomechanics community can 
build a library of simulations that can be exchanged, tested, 
analyzed, and improved through a multi-institutional 
collaboration. Developing software that enables a concerted 
effort from many investigators poses technical and sociological 
challenges. Meeting those challenges will accelerate the discovery 
of principles that govern movement control and improve 
treatments for individuals with movement pathologies. 
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I. INTRODUCTION 
ANY elements of the neuromusculoskeletal system 
interact to enable coordinated movement. Scientists 

fascinated by human movement have performed an extensive 
range of studies to describe these elements. As a result, there 
is a wealth of data that characterize the mechanics of muscle, 
the geometric relationships between muscles and bones, and 
the motions of joints. Clinicians who treat movement 
abnormalities in individuals with cerebral palsy, stroke, 
osteoarthritis and Parkinson’s disease have examined the 
neuromuscular excitation patterns and movement kinematics 
of literally thousands of patients, both before and after 
treatment interventions. However, synthesizing detailed 
descriptions of the elements of the neuromusculoskeletal 
system with measurements of movement to create an 
integrated understanding of normal movement and to establish 
a scientific basis for correcting abnormal movement remains a 
major challenge.  

Using experiments alone to understand movement 
dynamics has two fundamental limitations. First, important 
variables, including the forces generated by muscles, are not 
generally measurable in experiments. Second, it is difficult to 
establish cause-effect relationships in complex dynamic 
systems from experimental data alone. As a result, elucidating 
the functions of muscles from experiments is not 
straightforward. For example, electromyographic (EMG) 
recordings can indicate when a muscle is active, but 
examination of EMG recordings does not allow one to 
determine which motions of the body arise from a muscle’s 
activity. Determining how individual muscles contribute to 
observed motions is difficult because a muscle can accelerate 
joints that it does not span and body segments to which it does 
not attach [1].  

A theoretical framework is needed, in combination with 
experiments, to uncover the principles that govern the 
coordination of muscles during normal movement, to 
determine how neuromuscular impairments contribute to 
abnormal movement, and to predict the functional 
consequences of treatments. To achieve these goals, the 
theoretical framework must reveal the cause-effect 
relationships between neuromuscular excitation patterns, 
muscle forces, and motions of the body. 

M
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A dynamic simulation of movement that integrates models 
describing the anatomy and physiology of the elements of the 
neuromusculoskeletal system and the mechanics of multijoint 
movement provides such a framework. Muscle-driven 
dynamic simulations complement experimental approaches by 
providing estimates of important variables, such as muscle and 
joint forces, which are difficult to measure experimentally. 
Simulations also enable cause-effect relationships to be 
identified and allow “what if?” studies to be performed in 
which, for example, the excitation pattern of a muscle can be 
changed and the resulting motion can be observed. 

Although the value of dynamic simulations of movement is 
broadly recognized [2-8], the field is fragmented. Many 
laboratories develop their own simulation software, and do not 
provide this software to others; thus, it is difficult for a 
simulation to be used or evaluated outside the laboratory 
where it is developed. The inability to reproduce results is a 
major limitation to advancing the science of biomedical 
simulation. Individual investigators have made elegant 
contributions to simulation technology, including the 
development of novel methods to model muscle [9-11], 
simulate contact [12, 13], and represent musculoskeletal 
geometry [14-16], but it is difficult for others to make use of 
these new techniques because the software that implements 
them is generally unavailable. Since software tools are not 
freely accessible to assist in the development, analysis, and 
control of musculoskeletal dynamic simulations, researchers 
typically must spend a great deal of time implementing each 
new simulation and creating tools to analyze it. Developing 
dynamic simulations of movement is technically challenging, 
and many movement science laboratories lack the resources or 
technical expertise to generate their own simulations. These 
conditions create a major barrier to advancing simulation 
technology and achieving the scientific potential of 
musculoskeletal simulations. 

In the early 1990s, Delp and Loan introduced a 
musculoskeletal modeling environment, called SIMM [17-19], 
that lets users create, alter, and evaluate models of many 
different musculoskeletal structures [20-22]. This software is 
now used by hundreds of biomechanics researchers to create 
computer models of musculoskeletal structures and to 
simulate movements such as walking [23-25], cycling [26-28], 
running [29, 30], and stair climbing [31]. Using SIMM, 
models of the lower and upper extremities were developed to 
examine the biomechanical consequences of surgical 
procedures including tendon surgeries [32-38], osteotomies 
[39-41] and total joint replacements [42-44]. A lower-
extremity model was used to estimate muscle-tendon lengths, 
velocities, moment arms, and induced accelerations during 
normal and pathologic gait [45-52]. Studies have been 
conducted to investigate the treatment of individuals with 
spinal cord injury [53-56], to analyze joint mechanics in 
subjects with patellofemoral pain [57, 58], to calculate forces 
at the knee during running [59] and cutting [60], to examine 
the influence of foot positioning and joint compliance on the 
occurrence of ankle sprains [61, 62], and to investigate causes 

of abnormal gait [63-65]. These studies have demonstrated the 
utility of musculoskeletal models and dynamic simulations for 
analyzing the causes of gait abnormalities and the effects of 
various treatments. SIMM has helped bring simulation to 
biologists who have created computational models of the frog 
[66, 67], Tyrannosaur [22], cockroach [68], and other animals. 

 
Fig. 1.  Schematic of OpenSim, an open source software system for 
modeling, simulating, and analyzing the neuromusculoskeletal system. 
OpenSim is built on top of core computational components that allow one to 
derive equations of motion for dynamical systems, perform numerical 
integration, and solve constrained non-linear optimization problems.  In 
addition, OpenSim offers access to control algorithms (e.g., computed muscle 
control), actuators (e.g., muscle and contact models), and analyses (e.g., 
muscle-induced accelerations). OpenSim integrates these components into a 
modeling and simulation platform.  Users can extend OpenSim by writing 
their own plug-ins for analysis or control, or to represent 
neuromusculoskeletal elements (e.g., muscle models).  In a graphical user 
interface, the user is able to access a suite of high-level tools for viewing 
models, editing muscles, plotting results, and other functions.  SimTrack, one 
of the OpenSim tools, enables accurate muscle-driven simulations to be 
generated that represent the dynamics of individual subjects.  OpenSim is 
being developed and maintained on Simtk.org; all of the software is freely 
available.  

Although SIMM helps formulate models of the 
musculoskeletal system and dynamic simulations of 
movement, it provides no assistance with the computation of 
muscle excitations that produce coordinated movement and 
has limited tools for analyzing the results of dynamic 
simulations. Furthermore, SIMM and other commercial 
packages, such as Visual 3D (C-Motion Inc.), Anybody 
(Anybody Technology) or Adams (MSC Software Corp.), do 
not provide full access to source code, which makes it difficult 
for biomechanics researchers to extend their capabilities. Over 
the past decade, new software engineering methods have 
emerged that enable the development of software systems that 
are more extensible. We view this as an opportunity to 
develop a simulation platform that engages a broader 
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spectrum of the biomechanics community. 
We have established an open-source simulation 

environment, called OpenSim, to accelerate the development 
and sharing of simulation technology and to better integrate 
dynamic simulations into the field of movement science (Fig. 
1). Open-source software development has become a 
successful strategy for both commercial and academic efforts 
(e.g., the Linux operating system). Making source code 
available enables researchers to reproduce results produced by 
other laboratories and to make improvements and adapt code 
to meet their needs. Modern plug-in technology, which we 
have adopted, lets users extend software functionality and 
allows new tools to be shared more easily. We believe that the 
biomechanics community will benefit from a greater degree of 
collaboration as a result of an open-source effort. 

Enticing researchers to help develop and test open-source 
software requires the initial developers to provide tools that 
others can use and extend. OpenSim provides two. The first 
comprises a set of modeling and analysis tools similar to those 
included in SIMM [17, 19]. The second, SimTrack, enables 
researchers to generate dynamic simulations of movement 
from motion capture data. 

This article first provides a brief overview of OpenSim. We 
then focus on SimTrack and how simulations that characterize 
the dynamics of individual subjects can assist in treatment 
planning. We describe a method to generate subject-specific 
simulations and present a case study, in which we used a 
dynamic simulation of a subject with stiff-knee gait to 
understand the causes of his abnormal movement and the 
effects of possible treatments. We close with a review of the 
challenges for the field.  

 

II. WHAT IS OPENSIM? 
OpenSim is an open-source platform for modeling, 

simulating, and analyzing the neuromusculoskeletal system. It 
includes low-level computational tools that are invoked by an 
application (Fig. 1). A graphical user interface provides access 
to key functionality.  OpenSim is being developed and 
maintained on Simtk.org by a growing group of participants. 
Simtk.org serves as a public repository for data, models, and 
computational tools related to physics-based simulation of 
biological structures. 

The software is written in ANSI C++, and the graphical 
user interface is written in Java, allowing OpenSim to compile 
and run on common operating systems. Open-source, third-
party tools are used for some basic functionality, including the 
Xerces Parser from the Apache Foundation for reading and 
writing XML files (xml.apache.org/xerces-c) and the 
Visualization Toolkit from Kitware for visualization 
(www.vtk.org).  Use of plug-in technology allows low-level 
computational components such as dynamics engines, 
integrators, and optimizers to be updated as appropriate 
without extensive restructuring. For example, OpenSim 
currently uses SDFast (Parametric Technology Corp.) as its 

dynamics engine; however, future releases will allow 
SimbodyTM to be used as well. SimbodyTM is an open-source 
order-n dynamics engine under development at Simtk.org. 

The plug-in architecture of OpenSim encourages users to 
extend functionality by developing their own muscle models, 
contact models, controllers, and analyses. For example, about 
a dozen analysis plug-ins, authored by different users, are 
available in OpenSim.  These analysis tools calculate joint 
forces, muscle-induced accelerations, muscle powers, and 
other variables. Although these analyses were developed for 
different musculoskeletal models, they have general 
applicability and can be used with any OpenSim model. The 
plug-in architecture of OpenSim thus provides a means of 
rapidly disseminating new functionality to the biomechanics 
community. 

To add a plug-in (e.g., an analysis), a user must write a new 
C++ class (e.g., InducedAcceleration) derived from the 
appropriate base class (e.g., Analysis), implement a number of 
required methods, and compile the class into a dynamically 
linked library. The new plug-in (e.g., the InducedAcceleration 
analysis) can then be used in simulations and shared with 
other users. Independently, plug-ins can also be developed to 
enhance the capabilities of the graphical user interface. The 
user interface gets nearly all its functionality from plug-ins. 
For example, the modules for motion viewing, plotting, and 
muscle editing are all plug-ins. A user interface plug-in 
example is provided with OpenSim that users can adapt to 
extend the functionality of the graphical interface. Like the 
low-level C++ plug-ins for analyses, muscle models, 
controllers, etc., user interface plug-ins can be shared with 

 
Fig. 2.  Screenshot from OpenSim. Models of many different musculoskeletal 
structures, including the lower extremity, upper extremity, and neck, can be 
loaded, viewed and analyzed. Muscles are shown as red lines; virtual markers 
are shown as blue spheres.  

http://www.simtk.org/
http://www.simtk.org/
http://xml.apache.org/xerces-c
http://www.vtk.org/
http://www.simtk.org/
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other users. 
The OpenSim graphical user interface includes a suite of 

tools for creating musculoskeletal models, generating 
simulations, and visualizing results (Fig. 2). Much of the 
functionality of SIMM will be available in OpenSim, 
including, for example, the ability to manipulate joints, edit 
muscles, and plot variables of interest. In addition, SIMM 
joint (*.jnt) and muscle (*.msl) files [18] can be imported. 
OpenSim provides simulation and control capabilities not 
available in SIMM. SimTrack, in particular, is a tool capable 
of generating muscle-actuated simulations of subject-specific 
motion quickly and accurately, as described below.  

 

III. SIMTRACK: AN OPENSIM TOOL FOR GENERATING 
DYNAMIC SIMULATIONS 

To create a muscle-driven simulation of a movement, one 
must first formulate a dynamic model of the musculoskeletal 
system and its interactions with the environment. The 
elements of the musculoskeletal system are modeled by sets of 
differential equations that describe muscle contraction 
dynamics, musculoskeletal geometry, and body segmental 
dynamics. These equations characterize the time-dependent 
behavior of the musculoskeletal system in response to 
neuromuscular excitation.  Once a dynamic model of the 
musculoskeletal system is formulated, the next step is to find a 
pattern of muscle excitations that produce a coordinated 
movement. Excitations may be found by solving an 
optimization problem in which the objective of a motor task is 
defined (e.g., jumping as high as possible) or in which the 
objective is to drive a dynamic model to “track” experimental 
motion data [69]. Simulations are generally evaluated by how 
well they agree with experimentally measured kinematics, 
kinetics, and EMG patterns.  Once a simulation is created and 
its accuracy is tested, it can be analyzed to examine the 
contributions a muscle makes to the motions of the body and 
the consequences of a simulated treatment. 

Determining a set of muscle excitations that produce a 

coordinated movement is one of the major challenges in 
creating a dynamic simulation. Historically, the computational 
cost of generating coordinated muscle-actuated simulations of 
movement has been high, requiring days, weeks, or months of 
computer time [23, 65, 70]. Recent breakthroughs in the 
application of robotic control techniques to biomechanical 
simulation have dramatically reduced the time needed to 
generate such simulations [28, 71]. For example, the 
computed muscle control technique determines muscle 
excitations that reproduce measured pedaling dynamics in just 
ten minutes [28]; this is over two orders of magnitude faster 
than conventional dynamic optimization techniques. Thelen 
and Anderson extended this approach to compute muscle 
excitation patterns that drove a 21-degree-of-freedom, 92-
muscle model to track experimental gait data of 10 healthy 
adults [25]. A simulation of a half-cycle of gait was generated 
in approximately 30 minutes. The speed of this technique 
makes it practical to generate subject-specific simulations of a 
wide variety of movements. 

SimTrack guides users through four steps to create a 
dynamic simulation (Fig. 3). As input, SimTrack takes a 
dynamic model of the musculoskeletal system and 
experimentally-measured kinematics and reaction forces and 
moments. While this approach is general, we will describe it 
in the context of generating simulations of gait, since this is 
one of the most challenging applications. 

In Step 1, a dynamic musculoskeletal model (e.g., a SIMM 
model [19]) is scaled to match the anthropometry of an 
individual subject. The dimensions of each body segment in 
the model are scaled based on relative distances between pairs 
of markers obtained from a motion-capture system and the 
corresponding virtual marker locations in the model (e.g., see 
blue spheres in Fig. 2). The mass properties of the body 
segments are scaled proportionally so that the total measured 
mass of the subject is reproduced. Muscle fiber lengths and 
tendon slack lengths of the muscle-tendon actuators are scaled 
so that they each remain the same percentage of total actuator 
length. 

In Step 2, an inverse kinematics (IK) problem is solved to 
 

 
 
Fig. 3.  Steps for generating a muscle-driven simulation of a subject’s motion with SimTrack.  The inputs are a dynamic musculoskeletal model, experimental 
kinematics (i.e., x-y-z trajectories of marker data, joint centers, and joint angles), and experimental reaction forces and moments obtained from a subject.  In Step 
1, the experimental kinematics are used to scale the musculoskeletal model to match the dimensions of the subject.  In Step 2, an inverse kinematics (IK) 
problem is solved to find the model joint angles that best reproduce the experimental kinematics.  In Step 3, a residual reduction algorithm (RRA) is used to 
refine the model kinematics so that they are more dynamically consistent with the experimental reaction forces and moments.  In Step 4, a computed muscle 
control (CMC) algorithm is used to find a set of muscle excitations that will generate a forward dynamic simulation that closely tracks the motion of the subject. 
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determine the model generalized coordinate values (joint 
angles and translations) that best reproduce the raw marker 
data obtained from motion capture. Step 2 is formulated as a 
least-squares problem that minimizes the differences between 
the measured marker locations and the model’s virtual marker 
locations, subject to joint constraints [72]. If the experimental 
kinematics includes a set of joint centers or joint angles 
produced by motion-capture software, these may also be 
included in the formulation. Therefore, for each frame in the 
experimental kinematics, the inverse kinematics problem is to 
minimize the weighted squared error: 
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the  marker or joint center for the subject and model, 
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jθ thj

iw jω  are factors that allow 
markers and joint angles to be weighted differently. 

Due to experimental error and modeling assumptions, 
measured ground reaction forces and moments are often 
dynamically inconsistent with the model kinematics. In Step 3, 
a residual reduction algorithm (RRA) is applied to make the 
model generalized coordinates (joint angles and translations) 
computed in Step 2 more dynamically consistent with the 
measured ground reaction forces and moments. From 
Newton’s second law, the following equation relates the 
measured ground reaction force and gravitational acceleration 
to the accelerations of the body segments: 

 

1

segments

external i i residual
i

F m a F
=

= −∑
v vv  (2) 

 
where  is the measured ground reaction force minus the 
body weight vector, is the translational acceleration of the 
center of mass of the  body segment, is the mass of the 

 body segment, and  is the residual force. An 
analogous equation relates the ground reaction moment to the 
model kinematics and the residual moment. In the absence of 
experimental and modeling error, the residual force should be 
zero (i.e., ). In practice, this is never the case. 
Through a combination of slight, controlled perturbations to 
the motion trajectory, and small adjustments to the mass 
parameters of the model, it is possible to reduce the residual 
forces and moments required for dynamic consistency. To 
reduce the residual forces and moments, the residuals are 
computed and averaged over the duration of the movement. 
Based on these averages, the algorithm recommends changes 

in the model mass parameters, such as the location of the 
center of mass of the trunk, that reduce the average values of 
the residuals over the duration of the movement. Following 
any adjustments to the mass parameters, a control problem is 
solved in which all degrees of freedom of the model are 
actuated. In particular, the joints are actuated by idealized 
joint moments, and, in addition, three residual forces and three 
residual moments are applied to a chosen segment of the 
model to control the six degrees of freedom between the 
model and the ground (i.e., three translations and three 
rotations). If no limits are placed on the residuals, the 
kinematics can be tracked with little or no error. However, at 
the user’s discretion, upper limits can be placed on the 
magnitudes of the residuals, in which case the motion of the 
model is altered yielding a new set of kinematics that are 
dynamically consistent with the limited residuals. A 
performance criterion is used to distribute tracking errors 
across the joint angles: 
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where jΩ  is a factor weighting the relative importance of the 

jth joint, and  is the desired acceleration of the jdesired
jq&& th degree 

of freedom given by a proportional-derivative control law 
[25]. The values for the model degrees of freedom and mass 
properties output by the residual reduction algorithm are used 
as input to Step 4. 

In Step 4, computed muscle control (CMC) is used to 
generate a set of muscle excitations that produce a coordinated 
muscle-driven simulation of the subject’s movement. 
Computed muscle control uses a static optimization criterion 
to distribute forces across synergistic muscles and 
proportional-derivative control to generate a forward dynamic 
simulation that closely tracks the kinematics derived in Step 3 
[25]. Although a static performance criterion is used, the full 
state equations representing the activation and contraction 
dynamics of the muscles are incorporated into the forward 
dynamic simulation. Activation dynamics is modeled by 
relating the time rate of change of muscle activation ( ) to 
muscle activation ( ) and excitation ( u ): 
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where actτ  and deactτ  are the time constants for activation and 
deactivation. Musculotendon contraction dynamics is 
described by a lumped-parameter model that accounts for the 
force-length-velocity properties of muscle and the elastic 
properties of tendon. In particular, the time rate of change of 
muscle length ( ) is related to muscle length ( ), 
musculotendon actuator length ( ), and muscle activation 

ml& ml

mtl



TBME-00014-2007 & TMBE-00592-2006 
 

6

( a ): 
 

1( , , )m v m mtl f l l a−=&  (5) 
 
where  is the force velocity relation for muscle. In our 
current implementation, the force between the foot and the 
ground is not modeled; rather, the measured ground reaction 
forces and moments are applied directly to the foot. When 
analyzing a simulation, as described in the case study below, 
spring-damper elements are introduced between the foot and 
the ground to allow the reaction forces and moments to 
respond to perturbations (e.g., altered muscle forces).  

vf

 

IV. CASE STUDY 
We have generated dynamic simulations of individual 

subjects with abnormal gait using computed muscle control 
[25] to examine the causes of their abnormal walking pattern 
and to simulate treatment options. This case study 
demonstrates how simulations can provide insight into the 
causes of stiff-knee gait, a condition in which swing-phase 
knee flexion is substantially diminished. Reduced knee flexion 
is often attributed to excessive excitation of the rectus femoris 
during the swing phase [73]. However, factors that limit knee 
flexion velocity just before swing, such as excessive force in 
vasti or rectus femoris, or diminished force in iliopsoas or 
gastrocnemius, may also reduce knee flexion during swing 
[74]. Determining which, if any, of these factors limit an 
individual’s knee flexion is challenging because current 
diagnostic methods cannot evaluate how forces produced by 
the rectus femoris or other muscles influence swing-phase 
knee motions. 

There are several options for treatment of stiff-knee gait. 

One option, botulinum toxin injection, theoretically decreases 
the hip and knee moments generated by the rectus femoris. A 
second option, rectus femoris transfer, theoretically decreases 
the muscle’s knee extension moment while leaving its hip 
flexion moment intact. At present, the mechanisms 
responsible for patients’ improvements in swing-phase knee 
flexion following these treatments are not well understood. In 
this case study, we generated and analyzed a dynamic 
simulation of a subject with stiff-knee gait to determine the 
biomechanical cause of his diminished knee flexion and the 
potential consequences of different treatment options (Fig. 4). 

The subject was a 12-year-old male diagnosed with spastic 
cerebral palsy. His left lower limb exhibited limited knee 
flexion during swing and abnormal activity of rectus femoris 
(preswing and swing) and vasti (preswing). We represented 
the subject’s musculoskeletal system by a scaled, 21-degree-
of-freedom linkage actuated by 92 muscles and generated a 
forward dynamic simulation of the subject’s gait. The 
simulated joint angles reproduced the subject’s measured knee 
flexion angle to within 2° (Fig. 5, “simulated”). 

We evaluated the contributions of rectus femoris, vasti, and 
other muscles to knee flexion by altering muscle excitations in 
the simulation and computing the resulting changes in peak 
knee flexion. Analysis of the subject’s dynamic simulation 
suggested that excessive activity of the knee extensors in 
preswing was the major cause of his stiff-knee gait. 
Decreasing the excitation of rectus femoris or vasti during 
preswing increased peak knee flexion substantially (Fig. 5, 
curves A and B). Decreasing the excitation of rectus femoris 
in early swing had a negligible effect on peak knee flexion 
(Fig. 5, curve C). 

We examined the potential biomechanical consequences of 
botulinum toxin injection and rectus femoris transfer. 
Botulinum toxin injection was simulated by decreasing the 

 

 
 
Fig. 4.  Simulation-based treatment planning for stiff-knee gait.  Stiff-knee gait is characterized by insufficient knee flexion during the swing phase.  A muscle-
driven simulation that reproduces an individual’s movement dynamics (left) can provide a scientific basis for planning treatments; for example, by predicting 
whether an increase in knee flexion is likely to result following botulinum toxin injection to reduce rectus femoris excitation (right-center) or rectus femoris 
transfer surgery to change the muscle line of action (right).  



TBME-00014-2007 & TMBE-00592-2006 
 

7

 
 

 
Fig. 6.  Knee flexion trajectories for different simulated treatments.  The 
subject’s pre- and post-operative measured knee angles are shown for 
comparison.  Shaded area is the average knee angle for unimpaired subjects ± 
1 SD. 

excessive excitation of rectus femoris while leaving its passive 
force-length properties intact. Rectus femoris transfer was 
simulated by transferring the muscle’s insertion in the model 
to the iliotibial band, a common transfer site [75]. We 
assumed that the pattern of rectus femoris excitation was not 
changed by the surgery. 

Peak knee flexion increased following each of the simulated 
treatments. Decreasing the excessive excitation of rectus 
femoris in the model, simulating the effects of botulinum 
toxin injection, increased knee flexion by about 10º (Fig. 6, 
curve A). Eliminating the excessive knee extension moment of 
rectus femoris in preswing and swing while leaving the hip 
moment intact, simulating a rectus femoris transfer, increased 
the peak knee flexion by about 30º (Fig. 6, curve B). This 
result suggests that preserving the capacity of the rectus 
femoris to generate a hip flexion moment is important when 
attempting to correct stiff-knee gait caused by rectus femoris 
overactivity. This subject underwent a rectus femoris transfer 
as part of his surgical treatment and achieved significant 
improvement in both knee flexion velocity at toe-off and knee 
flexion in swing. The improvement in knee flexion following 
a simulated tendon transfer were similar to the subject’s actual 
improvements following surgery (Fig. 6). 

Simulations of normal walking (e.g., [23], [63], [70]) have 
enabled investigators to identify the actions of muscles with a 
level of specificity and certainty that surpasses insights gained 
with experimental methods alone. Simulations of abnormal 
walking offer similar potential, but are challenging to develop, 
in part, because they require determination of muscle 
excitations that generate the abnormal movement dynamics 
exhibited by persons with movement disorders. The computed 
muscle control method [28] provides a computationally 
efficient means to generate these simulations and is now 
available for use by researchers around the world.  

 

 

 
 
Fig. 5.  Knee flexion trajectories for different quadriceps excitation levels. 
The subject's pre-operative measured knee angle is shown for comparison. 
Shaded area is the average knee angle for unimpaired subjects ±1 SD. Note 
that reducing the excitations of the vasti (VAS) and rectus femoris (RF) in 
preswing had a greater affect on knee motion than reducing excitation during 
swing. 

V. OPPORTUNITIES AND CHALLENGES FOR BIOMECHANICAL 
SIMULATION 

We believe simulations will advance movement science by 
facilitating interactions between modelers and 
experimentalists. Modelers need experimentalists to acquire 
parameters used in simulations and to test the accuracy of 
results derived from simulations. Experimentalists need 
modelers to provide a theoretical framework within which to 
interpret experimental observations, and to help gain 
perspective from the wealth of data derived from 
biomechanical experiments. With access to open-source 
software for developing and analyzing muscle-driven 
simulations, biomechanics researchers are now in a position to 
establish quantitative, cause-effect relationships between the 
neuromuscular excitation patterns, muscle forces, external 
reaction forces, and motions of the body that are observed in 
the laboratory. Coupled with high quality experimental 
measurements, simulations will help elucidate how elements 
of the neuromusculoskeletal system interact to produce 
movement and, we hope, improve the outcomes of treatments 
for persons with movement disorders. 

A variety of software packages have been used to create 
and analyze models of the lower limb [17, 76], upper limb 
[21, 55], cervical spine [20], lumbar spine [77], and other 
musculoskeletal structures. Although these models are 
implemented in different modeling packages, they include 
similar model parameters. One challenge for the field is to 
define modeling standards and promote interchange between 
modeling packages. 

Another challenge for the field is to demonstrate that the 
use of simulations can improve treatment outcomes for 
individuals with movement disorders. The potential to use 
subject-specific simulations to better understand the causes of 
movement deviations and to assess treatment options is 
exciting, and the case study above provides specific and 
relevant insights into stiff-knee gait for one subject. Future 
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studies, in which simulations of many subjects are conducted, 
are needed to determine if general principles for treatment 
planning can be elucidated from the insights gained from 
analyzing simulations. Studies that retrospectively compare 
predictions from subject-specific simulations to the subjects’ 
actual outcomes are also needed to evaluate whether existing 
musculoskeletal models are sufficiently accurate, and to 
establish the conditions under which the results of simulations 
are applicable. The open-source simulation environment we 
have created makes such large-scale studies possible, though 
more development is needed to streamline the process of 
creating and validating simulations of individuals with 
impairments. Ultimately, prospective clinical trials are needed 
to determine if simulations can improve treatment outcomes. 

The ability to rapidly create coordinated muscle-driven 
simulations provides new research opportunities. Many 
previous simulation studies include results from a single 
simulation. With SimTrack it is possible to generate and 
analyze 3D simulations of many subjects, and to establish 
norms describing the muscle functions for subjects with a 
range of sizes, strengths, and movement patterns. It is also 
practical to perform sensitivity studies to determine whether 
the conclusions drawn from a simulation are sensitive to 
variations in model parameters. This is especially valuable 
when a direct comparison with experimental data (e.g., muscle 
force trajectories) is not feasible. It is also possible, as shown 
in the case study, to investigate how impairments, such as 
abnormal muscle excitations, contribute to abnormal 
movements in individual subjects, and to explore the 
functional consequences of treatments. 

The accuracy of a simulation depends on the fidelity of the 
underlying mathematical model of the neuromusculoskeletal 
system. Many assumptions are made in the development of 
musculoskeletal models, and some of these assumptions are 
based on limited experimental evidence. To improve the 
accuracy of musculoskeletal models, more in vivo 
measurements of musculoskeletal geometry and joint 
kinematics are needed to understand how variations due to 
size, age, deformity, or surgery influence the predictions of a 
model, and to determine the conditions under which 
simulations based on a generic model are applicable to 
individual subjects [79]. Experiments that characterize the 
effects of pathology and surgery on muscle force generation 
are needed to test assumptions made in musculoskeletal 
models and to assess their impact on movement. Advances in 
the neurosciences are needed to allow development of 
simulations that incorporate representations of sensory-motor 
control. Given that simulations include assumptions and 
approximations, it is critically important that each simulation 
be tested to establish its limitations. As more investigators use 
simulations of musculoskeletal dynamics, it is essential that 
each scientist test the accuracy of their simulations in the 
context of their specific scientific study. 

OpenSim provides new opportunities for collaboration and 
peer review. The code that comprises OpenSim is being 
tested, analyzed, and improved through a multi-institutional 

collaboration. Users are encouraged to modify the code to suit 
their applications and to share their contributions with others. 
As a result, simulation-based studies can now be reproduced 
and tested outside the laboratory where the simulation is first 
developed. Such rigorous tests are essential if biomechanical 
simulation is to become more of a science and less of an art. 

The development of a digital human (a computational 
model of the human neuromusculoskeletal system with 
complexity comparable to a human) is a grand challenge. If a 
general and comprehensive model were available, then users 
could choose how to simplify the model to address a particular 
scientific question. The Physiome Project [78] outlines this 
challenge and some of the important benefits of its success. 
Future work in this area is likely to involve musculoskeletal 
models that represent different temporal and spatial scales. 
The development of software to unite such multiscale models 
poses additional challenges. 

To simulate whole-body movements such as walking or 
running, motion-capture protocols that accurately describe 
patients’ joint axes, trunk motions, and foot motions are 
needed, along with ground reaction force data from 
consecutive strides. Conventional protocols for clinical 
motion analysis were not designed with the intent of creating 
simulations, and they could be improved. Developing 
simulations of movement highlights the limitations of current 
motion capture data and demonstrates the need for improved 
experimental protocols. 

Muscle-driven simulations generate a wealth of data. Using 
simulations to elucidate the principles that govern muscle 
coordination and to achieve improved clinical outcomes, 
therefore, requires tools that can help reveal insights from 
these data. Developing and disseminating analysis and 
visualization tools that provide new insights poses an 
important challenge for advancing biomechanical simulation. 
Our goal is to provide a platform on which the biomechanics 
community can build tools that help uncover the principles 
that govern human movement and design better treatments for 
individuals with physical disabilities. 
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