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Abstract—A 2-D strain estimation algorithm was used to 
estimate tendon strain from ultrasound data collected dur-
ing muscle twitch contractions. We first used speckle track-
ing techniques to estimate frame-to-frame displacements of all 
pixels within a rectangular region of interest (ROI) positioned 
over a tendon. A weighted, least-squares approach was then 
solved for the displacements of the ROI endpoints that best fit 
the pixel displacements. We summed endpoint displacements 
across successive frames to determine the cumulative endpoint 
motion, which was then used to estimate the cumulative strain 
along the tendinous fibers. The algorithm was applied to ultra-
sound radiofrequency data, acquired at 74 frames per second 
over the tibialis anterior (TA) musculotendon junction (MTJ). 
The TA muscle was electrically stimulated with the subject 
holding voluntary preloads of 0%, 10%, 20%, 30%, 40%, and 
50% of a maximum voluntary contraction (MVC). Peak ten-
don strains computed using elastography (0.06 to 0.80%) were 
slightly larger and occurred earlier (50–90 ms after stimulus) 
than calculations based on visual analysis of B-mode images. 
This difference likely reflected the more localized nature of the 
elastographic strain values. Estimates of the tangential elas-
tic modulus (192 ± 58 MPa) were consistent with literature 
values obtained using more direct approaches. It is concluded 
that automated elastographic approaches for computing in vivo 
tendon strains could provide new insights into musculotendon 
dynamics and function.

I. Introduction

Ultrasound is increasingly being used to character-
ize in vivo musculotendon mechanics. A common ap-

proach is to use visual inspection of B-mode images to 
identify anatomical landmarks, e.g., the musculotendon 
junction (MTJ), with the muscle in relaxed and contracted 
states. The relative motion between frames has been used 
to estimate various biomechanical quantities such as the 
average strain in the tendon [1]–[3], muscle fiber penna-
tion angles [4], and moment arms about a joint [5]. Strain 
estimates have also been coupled with measurements of 
external force produced by muscle contractions to obtain 
estimates of the tissue stress and stiffness [6], [7]. These 

studies have provided novel insights into musculotendon 
interactions under both static loading and dynamic condi-
tions such as walking [8], [9]. However, the manual digi-
tization of anatomical landmarks is time-consuming and 
does not provide high spatial resolution, thereby limiting 
the information that can be obtained.

The development of automated elastographic approach-
es for tracking musculotendon displacements could both 
expand the use of ultrasound in biomechanics and improve 
the resolution of strain measurements. A primary chal-
lenge is that current elastographic techniques best track 
motion along the beam axis [10], and it is extremely diffi-
cult to align an ultrasound transducer beam in the muscle 
and tendinous fiber directions. Although 2-D tracking al-
gorithms have been introduced in recent years [11]–[13], 
the lateral displacement estimates generally do not exhibit 
the resolution achieved in the axial direction. Prior studies 
that have used elastographic approaches to track muscle 
tissue have either only analyzed the axial strains [14] or 
relied on B-mode images [15], which cannot provide the 
same high spatial resolution as radiofrequency (RF) data 
[10].

The purpose of this study was to develop and evaluate 
the use of an RF elastography algorithm for estimating 
the strain along tendinous fibers during a muscular twitch 
contraction. Our experiments were performed on the tibi-
alis anterior, a superficial dorsiflexor of the ankle, under-
going twitch contractions. Strain estimates were compared 
with the timing and magnitude of strains determined from 
visual analysis of B-mode images. We also recorded the 
external force induced by the twitch, providing a basis 
for estimating the stress and tangential modulus of the 
tendinous tissue.

II. Methods

A. Data Acquisition

Five subjects (2 females, 3 males, age 27.4 ± 4.6 years, 
height 179 ± 7 cm, body mass 73 ± 9 kg) with no recent 
lower limb injury participated in this study. Each subject 
was seated with right hip, knee and ankle angles of 90, 
45, and 0 degrees, respectively. Subjects wore a stiff-soled 
bicycle shoe that was attached to a fixed load cell (LC101–
200, Omegadyne, Stamford, CT) near the metatarsal joint 
(Fig. 1). Force data from the load cell was recorded at 
1000 Hz using Labview software (National Instruments, 
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Austin, TX). The perpendicular distance between the 
load cell, ankle, and heel support was measured and sub-
sequently used with force measurements to compute the 
ankle joint moment.

Ultrasound images of the distal tibialis anterior (TA) 
musculotendon junction (MTJ) were recorded using a Sie-
mens Antares SONOLINE (Siemens Medical Solutions 
Inc., Mountain View, CA) clinical ultrasound scanner. A 
custom fixture was used to position a VFX 13–5 transduc-
er over the TA such that the MTJ was in the middle third 
of the image when the muscle was relaxed (Fig. 2). Radio-
frequency (RF) data (centered at 11 MHz) were acquired 
over a 2 cm deep by 4 cm wide window (1036 samples/
line by 244 A-lines) at a rate of 74 frames per second. The 
RF data were subsequently upsampled by a factor of 4 by 
linear interpolation in both the axial and lateral directions 
to increase the spatial sampling density of the computed 
correlation functions. The effects of upsampling the data 
was analyzed using synthetically generated RF data (see 
appendix).

Initially, the subject was asked to perform a maximum 
voluntary contraction (MVC), during which the maximum 
load cell force was recorded. Surface electrodes (51 × 51 
mm square electrodes, ConMed Corporation, Utica, NY) 
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Fig. 1. Subjects were seated with their right shoe rigidly attached to a fixed load cell. An external fixture was used to position the ultrasound 
transducer over the musculotendon junction of the tibialis anterior muscle. Surface stimulation electrodes were used to induce muscle twitch contrac-
tions.

Fig. 2. The region of interest (ROI) was defined as a rectangular re-
gion of width 0.75 mm extending between distal (X1,Y1) and proximal 
(X2,Y2) nodes along the tendon. The length L of the ROI was tracked 
by computing the displacements of all pixels within the ROI and then 
assuming that displacements varied linearly with the distance S from 
the distal node. Visual inspection was used to estimate the location of 
the musculotendon junction (MTJ) in each B-mode image, which was 
defined as the intersection of straight lines along the upper TA muscle 
and tendon boundaries (marked by X on image).



were then applied to the skin over the mid-belly of the tib-
ialis anterior muscle for inducing twitch contractions (Fig. 
1). A dual-channel, current-controlled stimulator (Grass 
S88, Astro-Med, Inc., West Warwick, RI) was used to ini-
tiate twitch contractions using a single current-controlled 
pulse (300 µs, 50 mA). Subjects were asked to hold target 
force levels of 0, 10, 20, 30, 40, and 50% of MVC before 
the stimulation pulse being introduced, with the desired 
and actual force level displayed to the subject graphically 
on a computer monitor. Three trials at each target force 
level were performed in a randomized order.

Following the trials, the location of the ultrasound trans-
ducer was marked on the skin surface at the distal and 
proximal ends of the transducer. The cross section of the 
tendon was imaged at these marked locations by orient-
ing the transducer perpendicular to the fiber direction. 
These B-mode images were subsequently used to measure 
the cross-sectional area of the tendinous tissue by tracing 
the tissue boundary. The skin markings were also used to 
measure the distal TA tendon length in a relaxed state. 
To do this, the insertion of the tendon was palpated in 
the subject’s foot, and the distance from each mark to the 
insertion was measured using a flexible measuring tape. In 
post-processing each image, the MTJ was found relative to 
the distal end of the ultrasound images, and this distance 
was added to the relaxed tendon length to estimate the ten-
don length from the MTJ to the insertion on the foot.

B. Elastography-Based Analysis of Tendon Strain

Calculation of cumulative displacements and strain 
along the tendon fiber direction involved the following 
steps:

	 1) 	A region of interest (ROI) along the direction of the 
tendinous fibers was defined in the first frame of 
data by the researcher.

	 2) 	Frame-to-frame displacements of 2 nodes at the dis-
tal and proximal ends of the ROI were computed.

	 3) 	The nodal displacements were summed and used to 
compute the net change in length along the ROI 
and, correspondingly the cumulative strain along the 
tendinous tissue.

Following is a detailed description of this process.

1) Defining the ROI: For each trial, a line segment was 
first established in an initial B-mode image by selecting 

2 endpoints (referred to as Node 1—the distal endpoint, 
and Node 2—the proximal endpoint) along the direction 
of the tendinous fibers. The ROI was defined as the tissue 
bounded by a rectangular area that extended between the 
endpoints (Fig. 2). The ROI width was set to 0.75 mm for 
all trials and subjects, which was sufficient to ensure that 
only tendinous tissue was within the ROI for the subjects 
with the narrowest tendons. The endpoints of each ROI 
were chosen from the initial frame of each trial, such that 
the ROI extended as long as a length of the tendon (~30 
mm) while allowing for nodal displacements to remain 
within the image window during the twitch.

2) Nodal Displacements: Pixel displacements between 
successive frames were computed using correlation-based 
speckle tracking [16]. Two-dimensional normalized, cross-
correlation functions, ρnm(k,l), were first computed for 
each of the pixels within the ROI, by cross-correlating 
a kernel (2K+1 pixels axially by 2L+1 pixels laterally) 
centered about the pixel in the initial frame with a search 
region centered at the same pixel in the subsequent frame 
(1) (see above). In (1), F1 and F2 refer to the RF data 
in the first and second frames, while k and l refer to the 
displacements in the axial and lateral directions. A fixed 
kernel size of 15 pixels (0.3 mm long, K = 7) by 3 pixels 
(0.5 mm wide, L = 1) was used. The size of the search 
region was defined to allow maximum frame-to-frame dis-
placements of 15 pixels (0.3 mm) and 6 pixels (1.0 mm) in 
axial and lateral directions, respectively.

After computing the correlation functions at each pixel, 
the correlation functions were spatially filtered along the 
length of the ROI to improve the signal-to-noise ratio [16]. 
To do this, the ROI was split into evenly spaced subin-
tervals. The number of subintervals, M, was set to 100. 
The average normalized position of all pixels within each 
subinterval along the length of the ROI was first deter-
mined as
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where Nj was the number of pixels in the jth subinterval, 
L was the current length of the ROI, and  smn  was the 
normalized distance along the length of the midline of the 
ROI from the distal endpoint to the pixel. The correlation 
functions were then averaged over all pixels within each 
subinterval:
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resulting in a correlation function matrix ρj(k,l) for each 
subinterval along the ROI.

Nominal displacements of each subinterval were first 
estimated as the distance to the peak correlation coeffi-
cient in its corresponding correlation function matrix from 
the matrix center pixel. Subpixel displacements were then 
estimated by fitting a 2-D quadratic function to the 3 × 3 
pixel region of the correlation function matrix centered at 
the peak correlation coefficient and analytically determin-
ing the peak of this function [11]. This process resulted 
in estimates of the axial, uj, and lateral, vj, incremental 
displacements for each subinterval j.

Finally, the frame-to-frame displacements of the end-
point nodes in the axial (U1, U2) and lateral (V1, V2) 
directions were obtained by using a weighted linear least 
squares fit to best predict the subinterval displacements, 
assuming a linear strain model (Fig. 3) 
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The peak correlations associated with each of the subin-
terval displacement estimates were used as a weight pa-
rameter when solving this overdetermined set of equations 
(4) and (5) for the node displacements. Displacements 
associated with correlation coefficients below a desired 
threshold (= 0.70) were excluded from the least squares 
calculations.

3) Tendon Strain: Node displacements were summed 
across successive frames to determine the cumulative mo-
tion of the ROI endpoints, which allowed for the ROI 
to translate, rotate, and change length over time. The 
twitch-induced cumulative engineering strain, Δε, along 
the ROI was then computed from length L of the ROI in 
each frame:

	 De =
-L L

L
0

0

, 	 (6)

where L0 was the initial length of the ROI before the 
twitch contraction stimulus. The performance of the elas-
tographic tracking algorithm was first verified by analyz-
ing synthetically generated RF data using a finite element 
model of soft tissue undergoing uniform deformation (see 
appendix). Accurate estimates of the frame-to-frame and 
cumulative strain were obtained when using the same lat-
eral upsampling factor that was applied to the experimen-
tally obtained images.

C. Visual Analysis of Tendon Strain

The peak tendon strain was also estimated via visual 
inspection of the B-mode images similar to previous inves-
tigations [1], [3], [6]. The musculotendon junction (MTJ) 
was first located in an image acquired with the muscle in 
the pre-twitch state, and in the frame at peak displace-
ment of the musculotendon junction during the induced 
twitch. The MTJ was defined to be the intersection of 
the upper (anterior) boundary of the tendinous tissues, 
including the aponeurosis and tendon, with the TA muscle 
and the upper (anterior) border of the TA muscle itself. 
This was determined by drawing straight intersecting lines 
along these muscle bounds (Fig. 2). From MTJ displace-
ments, average tendon strain was then estimated as the 
net displacement of the MTJ normalized to the length of 
tendon from the MTJ to its insertion point at the medial 
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Fig. 3. A linear, least-squares fit of the lateral (a) and axial (b) sub-
interval displacements was used to compute the nodal displacements 
between successive frames. For the example data shown, the coefficient 
of determination (R2) was 0.44 for the lateral displacements and 0.99 for 
the axial displacements.



cuneiform and first metatarsal of the foot, which was pre-
viously measured experimentally.

D. Biomechanical Analyses

Load cell data were first used to estimate the net mo-
ment, MA, about the ankle joint in the sagittal plane. It 
was assumed that all measured force was the result of TA 
muscle contractions about the ankle, resulting in an ex-
pression for the tendon force FT:

	 F
M

r
T A

A
T

= 	 (7)

where rA
T  is the tibialis anterior moment arm about the 

ankle (assumed to be 0.035 m [17]). The tendon engineer-
ing stress σT was then estimated by dividing the tendon 
force by the average cross-sectional area of the unloaded 
tendon, AT, over the imaging region:
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Tendon cross-sectional area was measured in ultrasound 
images at the distal end of MTJ view window when the 
tendon was unloaded. The calculated tendon stress was 
divided into the sum of the preload and incremental com-
ponents, σ = σp + Δσ, where σp is the tendon preload 
stress, and Δσ is the change in tendon stress due to the 
induced twitch contractions.

For each trial, the tangential modulus of the tendon, 
Etan, was calculated at the peak change in stress, Δσmax, 
normalized by the peak cumulative strain, Δεmax, during 
the twitch:

	 E tan .=
D
D
s
e

max

max
	 (9)

Cumulative strain, stress, and tangential moduli were cal-
culated for each trial using both elastography and visual 
analyses. Peak values were then averaged across the 3 re-
peated trials for each of the preload conditions.

III. Results

The proposed algorithm was able to track tissue mo-
tion with reasonably high correlations for all twitch con-
tractions with the exception of the zero preload condition 
(Table I). Over 82% of the subintervals had peak correla-
tions that exceeded the 0.70 threshold correlation when a 
preload was present. However, the correlations were sub-
stantially reduced in the no-preload case, with only 18 to 
71% of the sub-intervals having correlations that exceeded 
the 0.70 threshold. As a result for the remainder of this 
paper, we will only present strain estimates for the pre-
load conditions.

The change in cumulative tendon strain following the 
stimulus exhibited characteristic twitchlike responses, in-
volving a rapid increase in strain followed by a slower 
relaxation, as shown in Fig. 4(a). For all subjects and con-
ditions, motion of the more proximal node preceded and 
was larger than the motion of the distal node, as shown 
in Fig. 4(b).

The elastography-based cumulative strains for each pre-
load condition ranged from 0.06 to 0.80%. In a paired t-
test, these values were significantly (p < 0.05) larger than 
those obtained using visual inspection of the B-mode im-
ages, as shown in Fig. 5(a), where the cumulative change 
in strain ranged from 0.08% to 0.47%. The estimated pre-
load tendon stress ranged from 4 to 35 MPa across the 
conditions tested. The resulting tangential elastic moduli 
were independent of the preload magnitude, averaging 192 
± 58 MPa across all trials, as shown in Fig. 5(b).

At low preloads, twitch contraction times determined 
using elastography were significantly shorter than those 
estimated from either the visual strain or external force 
measures (Fig. 6). An average of 50 ms was required for 
the tendon to reach peak local strain at low preloads, with 
this value increasing to an average of 80 ms at the higher 
preloads.

IV. Discussion

This paper introduces the use of elastography-based 
analysis of RF data to characterize in vivo tendon strain 
during muscle twitch contractions. The approach was 
shown to provide reasonable estimates of the time-varying 
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TABLE I. Percentage of Subintervals (out of 100) That Exceeded the Correlation Threshold 
of 0.70 When Tracking Frame-to-Frame Displacement for Each of the Preload Conditions. 

Substantially Higher Correlations Were Achieved When the Tendon was Preloaded. 

Preload (%MVC)

Subject

1 2 3 4 5

0% 65 32 42 19 71
10% 95 82 82 92 99
20% 96 94 80 95 99
30% 96 99 87 93 98
40% 97 99 85 95 100
50% 98 100 92 96 100



tendon strain and tangential modulus, provided that the 
tendon was initially preloaded.

The results obtained using elastographic imaging differ 
from those obtained using more traditional visual-based 
approaches. Visual approaches require the manual identi-
fication of anatomical landmarks (e.g., the musculotendon 
junction) from B-mode images. However, because only a 
single anatomical landmark at the MTJ can usually be 
identified, researchers typically assume the other end of 
the tendon is either held stationary or has moved in a way 
that can be ascertained in an unloaded calibration trial 
[1], [2], [6], [18]–[20]. Therefore, visual-based approaches 
can only provide an estimate of the average strain over 
a long segment of tendon. In contrast, an elastography-
based approach is able to ascertain tendon strain using 
displacement measurements within the viewing window. 
This has the advantage of providing a more localized esti-
mate of the strain. In this study, we have shown that the 
peak local strain computed using elastography occurred 
earlier and was typically larger than the visual-based es-
timate of average strain over the entire tendon. Our esti-
mates of twitch contraction time based on the local strain 
measures were significantly faster at low preloads than 
literature values that are based on external force mea-
sures [21]. This difference may reflect the musculotendon 
dynamic processes in which the contraction process origi-
nates at the muscle belly and propagates to the end. As a 
result, tendon tissue nearer to the muscle belly is likely to 
be stretched earlier than more distal tissue, as was typi-
cally observed in the relative motion of the 2 endpoints of 
the ROI (Fig. 4).

A prior study used correlation-based analysis of B-
mode images to track small amplitude muscle stretch of 
the plantar flexors during quiet stance [15], [22]. However, 
the use of B-mode images requires the use of fairly large 
kernel sizes (e.g., 5 mm square in [15]) to track motion. In 
contrast, we were able to obtain displacement estimates 
with much smaller kernels (0.5 × 0.3 mm) using the RF 
data. This distinction is achieved by using the phase in-
formation in the raw RF data, which has been shown 
to facilitate accurate tracking and the resolution of spa-
tial variations in axial strain [10]. Although our current 
method does not provide spatial resolution (it provides 
only one strain value along the laterally oriented tendon), 
our long-term goal is to track multiple nodal points along 
the ROI so as to characterize spatial variations in tendon 
strain. Our approach can also potentially be applied to 
track muscle strains by defining the ROI along the fibers 
of the muscle rather than the tendon.

The coupling of cumulative strain estimates with biome-
chanical force data allowed for an estimate of the tangen-
tial elastic modulus of the tibialis anterior tendon. Prior 
studies have shown that tendon exhibits less stiffness in a 
low-load toe region, but then maintains a constant magni-
tude as load increases and all the tendinous fibers become 
taut [23]. We were not able to estimate the modulus for 
the zero-load case and thus were unable to fully capture 
the toe-region. However at low-to-moderate loads (10–50% 

of maximum isometric force), the estimated modulus was 
found to be fairly constant averaging 192 MPa, which is in 
the lower range of stiffnesses (157 to 530 MPa) previously 
estimated for the TA tendon [6]. It is possible that higher 
preloads may have resulted in greater tangential stiffness.

Our approach was not well suited for tracking the TA 
tendon motion when the stimulation pulse was applied to a 
relaxed muscle (Table I). This limitation could potentially 
result from the microstructure of the tendons, in which 
the fibers are initially slack before being loaded [23]. As a 
result, some out-of-plane motion may occur as the fibers 
become taut, which may have degraded the cross-corre-
lation functions, which inherently assume planar motion. 
It is possible that further increasing the frame rate may 
reduce the decorrelation that occurs due to out-of-plane 
and lateral motion, and hence improve the incremental 
displacement estimates under slack tendon conditions.

The primary challenge with using elastographic ap-
proaches for characterizing musculotendon mechanics is 
that most of the motion is perpendicular to the beam 
direction. Such lateral motion tracking tends to be an or-
der of magnitude less accurate than axial displacement 
estimates using current approaches [11]. Further study 
is needed to ascertain whether alternative lateral track-
ing schemes [12] or beam steering [24] may be able to 
improve the accuracy of lateral displacement estimates, 
which would further the long-term goal of estimating spa-
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Fig. 4. (a) The strain computed from the elastographic analysis of RF 
data peaks earlier and has a larger magnitude than that determined us-
ing visual analysis of the B-mode images. (b) Lateral displacement of the 
proximal node on the ROI tended to precede motion of the more distal 
node. Twitch contraction time was defined as the time after the onset of 
movement at which peak change in strain occurred.



tial variations in strain throughout a 2-D image region. In 
addition, this study only addressed the tracking of tendon 
motion during short duration twitch contractions involv-
ing less than 1% cumulative strain. The relatively short 
interval and small motion was advantageous when sum-
ming frame-to-frame motion, because errors can accumu-
late over longer duration trials.

The accuracy of cumulative displacements is particu-
larly affected by bias errors, which can result from inter-
polation of the correlation function [25], [26]. Analysis of 
the synthetic data by our tracking algorithm suggests that 
upsampling the data in the lateral direction was impor-
tant for reducing bias effects (Fig. A1 in the appendix). 
Finally, strain was computed over a region of interest that 
included both free tendon and aponeurosis (i.e., tendinous 
tissue within the muscle belly). This was done so that the 
MTJ would be visible in all trials, providing us with a vi-
sual comparison. However, it remains unclear whether the 
aponeurosis undergoes similar [18], [20] or greater strain 
[1], [2] than the free tendon. The elastography approach 
could potentially address this issue provided that the ex-
periments are repeated with the transducer located both 
proximally and distally to the MTJ.

In summary, we have demonstrated the use of elastog-
raphy for estimating the time evolution of tendon strain 
during twitch contractions. This approach can provide lo-

cal estimates of tendon strain for a short region of interest 
and, when coupled with biomechanical data, tangential 
tendon stiffness. Such analyses were shown to provide 
unique insights into musculotendon dynamics and may 
find additional clinical application in distinguishing the 
changes in tendon properties associated with pathologies. 

Appendix

We used synthetic data to investigate the performance 
of the local strain estimation algorithm described in the 
methods. Our purpose was to assess the accuracy of the 
algorithm and to evaluate the effect of lateral interpola-
tion of RF data on lateral strain estimates. A uniformly 
elastic numerical tissue mimicking (TM) phantom was 
constructed with a thickness of 10 mm, width of 40 mm, 
and depth of 40 mm using finite element analysis (FEA) 
software (ANSYS Inc., Canonsburg, PA). The Young’s 
modulus was set to 10 kPa, and the material was assumed 
to be nearly incompressible, with a Poisson’s ratio of 0.495. 
The bottom boundary of the tissue was constrained from 
moving axially. Zero friction was assumed at the bottom 
interface, allowing for lateral slip motion to occur. Uni-
form pressure was applied along the top of the tissue such 
that the material underwent successive normal strains of 
0.5% for 10 successive steps. Thus, we produced a series 
of 11 images in which the lateral strain was zero in the 
first frame and uniformly incremented up by 0.245% in 
each successive frame to a final cumulative lateral strain 
of 2.45%.

The axial and lateral displacement information was then 
used in an ultrasound simulation program [27] to generate 
pre and post-compression RF echo signal data at the end 
of each compression step. The simulation program calcu-
lates the frequency domain response of ultrasound waves 
propagating through a scattering medium comprised of 
100 μm radius polystyrene beads, which were random-
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Fig. 5. (a) Peak tendon strains measured using elastography were sig-
nificantly larger than peak strains estimated using visual inspection of 
B-mode images. The trend line shown represents a 1:1 ratio. (b) The 
tangential moduli of the tendon, ratios of change in stress to change in 
strain, were relatively constant across the range of preload conditions 
considered.

Fig. 6. Average (±1 sd) time to peak force and peak cumulative strain 
as assessed using both visual and elastographic approaches. Note that 
peak local strains (elastography) occurred much earlier than the average 
strain over the tendon when the muscle had low preloads.



ly distributed in the phantom at a high enough number 
density to ensure Rayleigh scattering [28]. The frequency 
responses were transformed back to the time domain to 
obtain ultrasound radiofrequency frames. Ultrasound echo 
signals obtained from a linear array transducer was mod-
eled, which consisted of 0.1 × 10 mm2 elements with a 
0.15 mm center-to-center element separation, with the 
transmit beam formed using 128 consecutive elements for 
the aperture. The incident pulses were modeled as Gauss-
ian shaped with an 8 MHz center frequency and a 100% 
bandwidth and sampled at 52 MHz. RF data were gener-
ated assuming a constant sound speed of 1540 m/s and 
attenuation was not included.

We compared the performance of our strain estimation 
algorithm for a 30 mm long ROI that was initially cen-
tered at a depth of 10 mm in the imaging plan. We ana-
lyzed 2 cases: when the ROI was initially horizontal, and 
when the ROI was oriented at a 10° angle in the imaging 
plane, which represented the average tendon orientation 
observed in our imaging study (Fig. 2). For each condi-
tion, we used linear interpolation ratios ranging from a 
factor of 1 to 8.

Our results show that upsampling of the data in the 
lateral direction is critical to achieve unbiased estimates of 
lateral strain (Fig. A1). Without upsampling, the frame-
to-frame lateral strain estimates averaged 0.235% (s.d. = 
0.015%), which was less than the actual lateral strain of 
0.245%. Biasing likely arose due to inaccuracy in the qua-
dratic interpolation method for estimating the correlation 
peak on the basis of the values to either side [25], [26]. 
Upsampling by a factor of 4 reduced these errors, result-
ing in average frame-to-frame lateral strain estimates of 
0.246% (s.d. = 0.017%), which was close to the actual 
lateral strain value of 0.245%. We also assessed the accu-
racy of errors in tracking strains in an obliquely oriented 
ROI that had a 10° orientation relative to the horizontal, 
which was similar to the orientation of the TA tendon in 

the experimental trials (Fig. 2). Strain errors again re-
duced when an up sampling rate of 4 was used, with av-
erage frame-to-frame strain estimates of 0.222% (s.d. = 
0.012%) being just slightly lower than the actual strain of 
0.227% along the obliquely oriented ROI. Based on this 
simulation analysis, we conclude that our tracking algo-
rithm can provide reasonably accurate estimates of strain 
along a laterally oriented ROI, provided that upsampling 
is used to improve the lateral spatial density of the raw 
RF data.

We do note that our model did not account for the 
complex interaction of transversely isotropic fibers and 
tendons. Models that account for these musculotendon 
properties and unique architectures are an area of active 
research interest [29], and when more fully developed, 
could provide further insights into the use of elastographic 
techniques to measure in vivo tendon strains.
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