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S U M M A R Y

HAMSTRING INJURIES OCCUR

FREQUENTLY, WITH A HIGH

RECURRENCE RATE, IN SPORTS

THAT REQUIRE EITHER HIGH-SPEED

SKILLED MOVEMENTS OR EXCES-

SIVE HIP FLEXION WITH KNEE EX-

TENSION. A PREVIOUS HAMSTRING

INJURY IS THE GREATEST RISK

FACTOR FOR A FUTURE HAMSTRING

INJURY, WHICH HAS LED SPORTS

MEDICINE PROFESSIONALS TO

SEARCH FOR IMPROVED

POSTINJURY REHABILITATION

STRATEGIES. ATHLETES MAY SHOW

POSTINJURY STRUCTURAL

CHANGES IN THE MUSCLE-

TENDON UNIT AND BE AT RISK FOR

REINJURY FOR UP TO A YEAR AFTER

RETURN TO SPORT. UNDERSTAND-

ING THE POSTINJURY CHANGES

CAN HELP CREATE PRACTICAL

APPLICATIONS FOR APPROPRIATE

RECONDITIONING AND SPORTS

PERFORMANCE PROGRAMS.

PURPOSE

T
his article attempts to demon-
strate the size and scope of the
acute hamstring injury by de-

scribing its incidence in various sports
and the difficulty in return to those
sports without impaired performance
and a high risk of reinjury. It will also
help the reader understand what hap-
pens anatomically and physiologically
after an acute hamstring injury. This
understanding is the prerequisite to the
ultimate purpose, which is to provide
practical applications for the sports
medicine and performance team that
help return athletes to sport with
reduced risk for recurrent injury.

INTRODUCTION

Acute hamstring strain injuries are
common in sports that involve sprint-
ing, kicking, or high-speed skilled
movements (2,4,10,15,21,23,33,34,38,
41,52,60–62). A retrospective review
of the National Collegiate Athletic

Association Injury Surveillance System
found that male college athletes were
62% more likely to sustain a hamstring
injury than female athletes and more
common in field sports than in court
sports (19). A National Football
League team published injury data,
including preseason training camp
from 1998 to 2007, and found that
hamstring strains were the second
most common injury, only surpassed
by knee sprains (23). Injury rates varied
by position, with it being the highest
percentage of total injuries among
running backs (22%), defensive backs
(14%), and wide receivers (12%) (23).
A 4-year study of injury rates within
a Division 1 football team showed that
hamstring strains were the third most
common orthopedic problem, behind
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knee and ankle injuries (15). A 2-year
analysis of professional soccer teams
revealed that 12% of all injuries were
hamstring strains (61). In addition to
high-speed sports, there is an increased
risk for hamstring strains in sports
involving slow extreme stretching-type
maneuvers, such as dancing (3,4).

Hamstring strain injuries often result in
significant recovery time and have
a lengthy period of increased suscep-
tibility for recurrent injury (36,46,47).
Reinjury rates reported in the literature
vary depending on the population, the
interventions used, and the duration
of follow-up. A study that analyzed
858 hamstring strains in Australian
footballers showed that the rate of
recurrence was 12.6% during the first
week of return to sports and 8.1% for
the second week. The cumulative risk
of reinjury for the entire 22-week
season was 30.6% (46). Another study
reported the recurrence rate at 1 year
to be as low as 7.7% (52), but most
often, recurrence rates are near 30% or
higher (10,38,52).

RISK FACTORS FOR HAMSTRING
INJURY

The high incidence of injury and
frustration associated with trying to
return to sport without reinjury have
led several researchers to search for
risk factors that predispose athletes to
hamstring injury. If these risk factors
were identifiable, they could then
potentially be addressed and modified
through injury prevention programs.
To date, there is some evidence to
suggest previous hamstring injury, older
age (relative for competitive athletes),
decreased quadriceps flexibility, and
muscle imbalances of the thigh are risk
factors for hamstring injury.

Gabbe et al. (24) showed that de-
creased quadriceps flexibility, as as-
sessed by the modified Thomas test,
was an independent risk factor for
hamstring strains in community-level
Australian rules football players. How-
ever, measurements, such as hamstring
flexibility when measured with the sit
and reach test, passive straight leg raise,
and the active knee extension test, have

not been related to a higher incidence
of hamstring strain injury (24,26,27).
One study found that hamstring-to-
quadriceps strength imbalances can be
a risk factor for reinjury (18). It is
important to note that 31% of the
individuals with a recurrent hamstring
injury in that study displayed normal
hamstring strength, suggesting that
strength imbalances alone cannot ex-
plain the risk for reinjury after a ham-
string strain. Older age, relative for
competitive athletes, has also been
identified as a risk factor for hamstring
injury in several studies (24,26,33). A
recent prospective study evaluated 508
soccer players in an attempt to de-
termine if player position, age, previous
hamstring injury, subjective rating,
or physical performance capabilities
could determine risk for hamstring
injury (22). The physical performance
tests included a Nordic hamstring
strength test, 40-m sprint test, and
countermovement jump test. Their
results suggest that previous acute
hamstring injury was the only signifi-
cant risk factor for a new hamstring
injury. Specifically, the previously in-
jured players were more than twice as
likely to sustain a new hamstring injury
as their noninjured counterparts. Other
studies have also found that a previous
hamstring injury is a significant risk
factor for recurrent injury, suggesting
that postinjury changes to the muscle
and altered movement patterns may
persist that contribute to this increased
risk (6,22,24,33,38,47).

MECHANISM OF HAMSTRING
INJURY

Most hamstring strain injuries happen
while running. It is generally believed
that they occur during terminal swing
phase of the gait cycle (29,45). This is
supported by the objective findings
from 2 separate hamstring injury case
studies (50). During the second half of
the swing, the hamstrings undergo an
eccentric contraction and absorb en-
ergy from the swing limb before foot
contact (16,63). Thus, the hamstrings
are stretched while subjected to load
(eccentric contraction), with the biceps
femoris incurring the greatest amount

of length change and performing the
greatest amount of negative work
during this time (58,59). This may
contribute to the tendency of the
biceps femoris to be more often injured
than the semimembranosus and sem-
itendinosus (5).

ANATOMY AND PHYSIOLOGY OF
HAMSTRING INJURY

Most hamstring injuries occur along the
proximal musculotendon junction
(MTJ) (20), where the muscle fibrils
intersect with the tendon (30). Like
most acute strain injuries, hamstring
strains do not typically involve the
muscle tearing away from the tendon.
In fact, it is the muscle tissue adjacent to
the MTJ that is damaged (31). Imme-
diately after injury, there is an acute
inflammatory response that is followed
by muscle and collagen regeneration
(8). An injury such as this can result in
fibrous scar formation. Structural
changes within the muscle immediately
after an acute hamstring strain injury
have been investigated (17,32,39,40).
The amount and extent of edema and
hemorrhage on magnetic resonance
(MR) images can confirm the presence
and severity of initial muscle fiber
damage and can also provide a reason-
able estimate of the rehabilitation
period, especially in the moderate and
severe cases (17,32,56). MR imaging and
clinical assessment with regard to the
less severe acute hamstring strains may
not necessarily be definitive (51). For
example, in 18 of the 58 cases studied,
a clinical diagnosis of hamstring injury
was made with no positive identifica-
tion of injury on MR images (51). It is
unknown whether MR is not sensitive
enough to identify more mild strains or
if other injuries may clinically mimic
mild hamstring strains.

Animal models of muscle injury have
shown that the growth of fibrous tissue
prevails over muscle regeneration and
eventually leads to the presence of
mature acellular scarring at the site of
injury (37,44). For example, imaging
studies in humans have found evidence
of scar tissue as soon as 6 weeks after
injury (17). Animal models suggest that
scar tissue may persist indefinitely
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Table 1
Dynamic warm-up drills

A march 1. Move arms in opposition of the legs

2. Drive 1 knee up to waist height, at the top of the knee lift
the foot should be parallel with the ground. At that point,
the opposite arm should be forward with hand open

3. Then, drive that leg toward the ground contacting the ball
of the foot while driving the opposite knee up toward waist
height

4. Repeat this cycle

A skips 1. Drive 1 knee up to waist height, at the top of the knee lift
the foot should be parallel with the ground. At the same
time, the opposite leg should be creating a powerful push
off leading to a hop

2. After that leg hops, then the other leg steps forward in
preparation for its hop. Then, drive that opposite knee up to
waist height. Always contact the ground first with the ball of
the foot, not the heel

3. Repeating this cycle, the pattern is step-hop, step-hop, etc.
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Table 1
(continued)

B skips 1. Drive 1 knee up to waist height, at the top of the knee lift
the foot should be parallel with the ground. At the same
time, the opposite leg should be creating a powerful push
off leading to a hop

2. After that leg hops, then the other leg steps forward in
preparation for its hop. Then, drive that opposite knee up
to waist height. Always contact the ground first with the
ball of the foot, not the heel

3. Just before the descent, the athlete should quickly extend
the knee out toward a running stride position

4. Repeating this cycle, the pattern is step-hop, step-hop, etc.

Short stride
cariocas

1. Start in an athletic position (hips and knees slightly flexed,
weight toward the ball of the feet)

2. Move the trail foot across the lead foot in front of the body.
The hips and pelvis should rotate in this direction such that
the legs do not actually touch

3. Then, move the trail foot across the lead foot behind the
body. The hips and pelvis should rotate in this direction
such that the legs do not actually touch. When done
correctly, the feet maintain a similar distance from each
other at all times, and most of the rotation occurs through
the pelvis

4. The speed and amplitude of arm motion should match that
of the legs but be in opposition

(continued)
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Table 1
(continued)

Side shuffles 1. Start in an athletic position (hips and knees slightly flexed,
weight toward the ball of the feet)

2. The trail leg pushes off forcefully enough to create a slight
airborne phase that translates the body laterally

3. The lead leg accepts the weight transfer and then quickly
shifts weight back to the trail leg

4. The majority of the effort should be with the hips; thus, the
shoulder height and head height will remain consistent. It is
also important to keep the feet perpendicular to the path of
travel

Leg cycling and
leg pawing

1. Stand on 1 leg

2. At a medium speed, bring the other leg up to a position
replicating the end of a running stride

3. Then, quickly and powerfully pull the leg back and behind
you

4. Repeat this cycle continuously on the same leg

The leg cycling exercise does not produce any ground contact
with the swing leg

The pawing exercise creates a forceful contact to the ball of
the foot of the swing leg in front of the body

This exercise gets its name from the image of a horse pawing
the ground
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Table 1
(continued)

Ankle pops 1. Push off the ball of 1 foot quickly and forcefully to create
push off at the ankle

2. Land by creating initial contact at the ball of the foot and
absorbing the landing force with the ankle quickly enough
to repeat the push off in a plyometric fashion

3. The knee and hip should be slightly flexed but not
significantly involved in the force production or reduction

4. This can be done on 2 feet or 1 foot

Quick support
running drills,
forward falling
running drills,
and explosive
starts

Quick support running drills involve any quick change
in position immediately followed by a sprint
(e.g., jump squat-sprint)

Forward falling running drills involve any sequence where
the athlete’s body is drifting into a positive shin angle or
forward lean and then followed by a sprint (e.g., tall-fall-run)

(continued)
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Table 1
(continued)

Explosive starts are drills in which the athlete needs to rapidly
assume the correct acceleration posture to work to a sprint
(e.g., scramble ups)
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Table 2
Trunk stabilization and core control exercises

Low to high
wood chops

1. The athlete grabs a cable or resistance band with 2
hands at knee height or lower and cable in a position
parallel to the frontal plane of the body. Thus, at the
start, the athlete will assume rotation toward the trail
leg and triple flexion to lower hands to the start point

2. From the starting point, the athlete generates
rotation force through the hips and core to rotate
toward the lead leg while simultaneously moving
into extension at the shoulders, hips, knees, and
ankles

3. At the end of the movement, the athlete will be
rotated about 90� relative to the frontal plane with
arms overhead

4. The athlete then returns to the start position in
reverse order

High to low
wood chops

1. The athlete grabs a cable or resistance band with 2
hands at or above head height and cable in a position
parallel to the frontal plane of the body. Thus, at the
start, the athlete will assume rotation toward the trail
leg and triple extension to reach hands to the start
point

2. From the starting point, the athlete generates
rotation force through the hips and core to rotate
toward the lead leg while simultaneously moving
into flexion at the shoulders, hips, knees, and ankles

3. At the end of the movement, the athlete will be
rotated about 90� relative to the frontal plane with
hands at about knee height

4. The athlete then returns to the start position in
reverse order

(continued)
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Table 2
(continued)

Rotating core
planks

1. The athlete lies on his or her side with his or her lower
forearm and elbow under his or her shoulder. The legs
are on top of each other

2. Then, tighten the abdominals to lift your hips

3. Lift hips to a height where they create a straight line
from shoulder to hip to ankle or just slightly higher.
The head should stay in line with your spine. Hold this
position for 2 s

4. Now rotate the chest toward the floor without
dropping the hips

5. Place the other forearm on the ground and rotate the
body like a pencil such that now the athlete is in the
opposite side bridge position

6. Continue back and forth in this fashion

Physioball
bridging with
alternating leg
holds and
alternating
hip position

1. The athlete lies on his or her back with both heels on
the ball

2. The athlete bridges up, or lifts hips, off the ground to
the desired position. The professional may ask them
to bridge all the way up to neutral hip extension or
may desire for them to perform in some hip flexion.
Either way, the spine should be in neutral

3. The angle of knee flexion may also vary upon
instruction to work multiple angles of knee flexion
and thus hamstring length

4. After a brief pause, the athlete switches to the other
leg to hold

5. This exercise can also be made more difficult by
changing the arm position, the closer the arms are to
the body and the less of the arms touching the
ground, the more challenging it will be
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(8,39). These changes may increase the
stiffness of the MTJ and thereby alter
the relative amount of stretch taken up
by the adjacent muscle and tendinous
tissue (7,49). The long-term effects of
a hamstring strain injury have been
shown to persist in some people until
at least 23 months after injury (53). In
this study, 14 subjects had returned to
full sporting activity without self-per-
ceived symptoms or performance def-
icits, yet residual scar tissue was present
along the MTJ adjacent to the site of
presumed previous injury for 11 of the
14 subjects.

The significance of these persistent
musculotendon morphological changes

to reinjury risk is not definitively known
at the present time. Proske et al. (48)
showed that after hamstring injury, the
optimum length for active force gener-
ation was reduced. This change sub-
sequently causes the angle of peak
torque to occur at a greater knee flexion
angle (i.e., shorter optimum musculo-
tendon length for active tension) com-
pared with the noninjured side. Proske
et al. and Morgan et al. (9,48) then
suggested a correlation with the in-
crease in the risk of injury recurrence
with the shorter optimum length for
tension, as it would create susceptibility
to damage from eccentric contractions
of the hamstrings occurring in the late
swing phase of running. These findings

created a speculation that the replace-
ment of muscle with scar tissue after
injury was the cause for this. However,
a more recent retrospective study of
athletes with a history of unilateral
hamstring strain injuries found that
a consistent shift in the angle of peak
torque was not observed (55). The same
study investigated the effect of scar
tissue on musculotendon dynamics by
assessing running kinematics at 4 speeds
ranging from 60 to 100% of maximum
sprinting speed (55). It was speculated
that peak stretch of the hamstring
muscles might be reduced in the pre-
viously injured limb compared with the
contralateral side as a compensation for
the modified tissue. However, no

Table 2
(continued)

Single-leg stand
rotating
reaches

1. The athlete starts by standing on one leg and has the
other leg slightly behind her

2. Balance on the standing leg without using arms to
control body sway. Make sure to keep hip and knee
slightly flexed so that the athlete is not ‘‘locking out’’
the standing leg

3. Next, the chest moves forward and free leg backward,
keeping them in line with each other. The athlete
moves as far as they can control with the goal of
reaching parallel to the floor. Simultaneously, during
the trunk movement, the opposite arm should be
reaching down and across the standing leg, this will
also induce some thoracic rotation

4. Pause at the end of that movement and return to the
start position. The athlete should try to initiate the
next repetition without touching the other foot to
the ground. The athlete should also alternate which
arm is reaching. This is a difficult exercise, the goal is
to control and minimize hip and knee frontal plane
excursion
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Table 3
Eccentric training exercises

Eccentric box
drops

1. Begin by stepping up onto a box (12–36 in.)

2. He or she then steps off the box and lands in a squat
position

3. Allow for significant flexion of the hips, knees, and ankles
upon foot contact

4. Then, stand up slowly

Eccentric loaded
lunge drops

1. The athlete rises up onto his or her toes while taking a lunge
stance, with or without resistance

2. He or she then quickly drops onto the ground with his or her
feet landing flat and balanced

3. Then, he or she will resist the downward forces into a deep
lunge position while maintaining good posture. The
majority of the athlete’s weight should be on the lead leg
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Table 3
(continued)

Eccentric forward
pulls

1. The athlete starts in a partial squat position with arms out in
front of the chest holding a rope or cable

2. While maintaining this position throughout the exercise, he
or she slowly pulls the load backward, emphasizing knee
extension in a hip flexed position

3. On the return phase, the athlete contacts the lead leg near
full extension (with hips flexed) and controls knee flexion

Split-stance
Zerchers

1. The athlete starts by holding the medicine ball (or other
weight) in front of the body at chest height. The athlete
should stand with one leg in front of the other, with most of
the body weight on the forward leg. The knee should be
almost straight but not hyperextended

2. The athlete then flexes forward with all of the motion
occurring at the hips while maintaining the same back and
knee position

3. The athlete stops the forward lean when feeling tension in
the hamstring and then uses the hamstrings and gluts to
return to the starting position

Single-leg
deadlifts

1. The athlete starts in a single-leg stand position with that
knee just slightly flexed. Hold dumbbells in each hand. He or
she may also use a medicine ball or bar with both hands

2. The athlete then flexes forward with all of the motion
occurring at the hips while maintaining the same knee and
back position. The cervical spine should also stay in
a neutral position. This will require the opposite leg to rise
up and back, maintaining an ‘‘in-line’’ posture with the torso.
The cervical spine should stay in neutral

3. The athlete stops the forward lean when feeling tension in
the hamstring and then uses the hamstrings and glutes to
return to the starting position without touching the other
leg to the ground
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significant asymmetries in overall ham-
string musculotendon stretch were
observed at any of the speeds tested
(55). Other studies have also shown
similar findings in a group of athletes
tested at submaximal sprinting speeds
(12,42). It seems that joint-level me-
chanics or local neuromuscular control
patterns do not appear to be consis-
tently altered.

It is possible that scar tissue may alter
local contraction mechanics, thereby
influencing reinjury risk. To investigate
this possibility, CINE phase-contrast
MR imaging has been used to measure
muscle tissue velocities adjacent to the
previous injury in a group of previously
injured athletes (55). This type of
imaging technique allowed us to mea-
sure tissue velocities within the biceps
femoris muscle tissue, adjacent to the
proximal MTJ. Measurements were
taken while the subjects performed
cyclic knee flexion-extension for both
elastic and inertial loading conditions.
The elastic and inertial loads induced
active shortening and lengthening
contractions, respectively. Muscle tis-
sue velocities obtained during these
tasks were integrated to estimate dis-
placements and subsequently used to
calculate tissue strain (54). Both
healthy and previously injured subjects
exhibited increased muscle strains near
the proximal MTJ (54). In addition,
subjects with previous injury presented
with significantly greater muscle tissue
strains when compared with their
healthy counterparts (54). It therefore
seems likely that residual scar tissue at
the site of a previous injury may
adversely affect local tissue mechanics
in a way that could contribute to
reinjury risk.

REHABILITATION AND
RECONDITIONING

Rehabilitation programs should ad-
dress components of these basic sci-
ence findings in addition to clinical
findings. In response to eccentric
exercise, an increase in serial sarco-
meres has been suggested (43). This
would allow the muscle-tendon unit to
operate at longer lengths and decrease

the magnitude of the stretch absorbed
by each sarcomere and likely the
corresponding strain. Clinical investi-
gations involving eccentric training
have also shown benefits in reducing
the incidence of hamstring strain
injuries. One study showed a decrease
in hamstring injury after a program of
concentric and eccentric contractions
on a YoYo flywheel ergometer (2),
whereas 3 other studies have shown
a decrease in hamstring injury after
eccentric training using the Nordic curl
exercise (1,10,25). Despite the benefit
of these programs, they can have
significantly low compliance rates
(21,25). There are also authors who
are critical of the training specificity of
the Nordic curl, noting that it is
a bilateral movement that only gen-
erates movement from the knees (11).
Thus, despite its demonstrated benefit,
there may be potential for even greater
benefit using a unilateral eccentric
exercise that incorporated hip and
knee motion.

Rehabilitation and reconditioning ef-
forts must also appreciate more re-
gional factors influencing function.
Musculoskeletal modeling has re-
cently demonstrated the substantial
influence that lumbopelvic muscles
can have on the overall stretch of
the hamstrings (16). For example,
contralateral hip flexor (i.e., iliopsoas)
activity during high-speed running
has a large influence on ipsilateral
hamstring stretch. That is because
activity of the iliopsoas can produce
an increase in anterior pelvic tilt
during early swing phase, the stretch
of the contralateral hamstrings is
increased. A recent experimental
study of normal running mechanics
has confirmed the bilateral coupling
between hip extension and contralat-
eral hamstring stretch (57). This
coupling may, in part, explain why
rehabilitation exercises targeting neu-
romuscular control of muscles in the
lumbopelvic region are effective at
reducing hamstring reinjury rates (52).

This influence of lumbopelvic muscles
on hamstring dynamics was prospec-
tively assessed by comparing reinjury

rates in athletes with hamstring strains
who were treated with a progressive
agility and trunk stabilization (PATS)
program and those treated with a ham-
string strengthening and stretching
(SS) program (52). Both programs
were to be completed at least 5 times
per week. The PATS group had a
reinjury rate of 0 and 7.7% at 2 weeks
and 1 year after return to sport,
respectively, whereas the SS group
had a reinjury rate of 54.5 and 70% at
2 weeks and 1 year after return to sport,
respectively (52). Although the mor-
phological and neuromuscular factors
were not measured, it does suggest that
there may be a role of lumbopelvic
neuromuscular control in the preven-
tion of future hamstring injury. In fact,
Cameron et al. (13) demonstrated that
below-average neuromuscular control
can predispose athletes to hamstring
injury. They prospectively investigated
limb neuromuscular control with a leg
swing movement discrimination test in
a weight-bearing position in 28 Aus-
tralian Football League players. The
movement discrimination test involved
backward swinging of the leg to
a contact plate without visual refer-
ence. The purpose of the test was to
assess lower limb neuromuscular con-
trol (13). Of those 28 players, 6
subsequently injured their hamstring
that season. All 6 players had move-
ment discrimination scores below the
mean. This led to the creation of the
‘‘HamSprint program’’ during which
a series of drills are conducted to
improve running technique, coordina-
tion, and hamstring function (14).
Some drills in this program included
leg cycling, pawing, ankle pops, high
knee marching, quick support running
drills, forward falling running drills, and
explosive starts (Table 1). After 6 weeks
of training using the HamSprint pro-
gram, athletes significantly improved
their movement discrimination scores
when compared with a control group
that performed regular stretching, run-
ning, and football drills (14). Based on
the findings from these 2 studies,
Cameron et al. (14) theorized that
the HamSprint program could be an
effective hamstring injury prevention
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program. These drills are similar to the
drills that Gambetta and Benton (28)
have advocated for hamstring injury
prevention. They theorized that these
drill would improve running mechan-
ics and sport-specific training of the
hamstrings. A similar hypothesis was
used for soccer athletes. A training
program consisting of a variety of
single-leg balance, takeoff and landing
exercises, that were theorized to im-
prove neuromuscular control for soc-
cer, were studied. A positive effect was
seen for this proprioceptive balance
training program by an observed de-
crease in noncontact hamstring injuries
in female soccer players (41). At the
completion of the 3-year prospective
program, noncontact hamstring injury
rates were reduced from 22.4 to
8.2/1,000 hours (p = 0.021) (41). These
studies suggest that proprioceptive and
neuromuscular control mechanisms
may be affected by injury and just as
importantly have an important role in
preventing future injury.

PRACTICAL APPLICATIONS

The scientific evidence presented cre-
ates a sound basis for the following
practical applications. Consistent im-
plementation of these practical appli-
cations consistently should improve
return to sport after injury by expedit-
ing return to optimal athletic function
and reducing the chance of recurrent
injury.

DYNAMIC WARM-UP

Upon return to sport after injury,
athletes should incorporate a dynamic
warm-up before practice or competi-
tion. The HamSprint program by
Cameron et al. (14) demonstrated that
dynamic agility drills can improve
lower limb motor control and that this
has a relationship to hamstring injury.
Postinjury research has also shown that
the use of progressive agility exercises
is an effective way to prevent reinjury
(52). Based on these principles, an
appropriate dynamic warm-up pro-
gram should include specific drills
shown to improve running technique,
lumbopelvic control, and hamstring

function. Such drills could include A
marching, A skips, B skips, short stride
cariocas, side shuffles, leg cycling, leg
pawing, ankle pops, quick support
running drills, forward falling running
drills, and explosive starts (Table 1)
(see Video, Supplemental Digital
Content1, http://links.lww.com/SCJ/A5,
labeled ‘‘Dynamic Warm-Up Drills’’).

TRUNK STABILIZATION AND
NEUROMUSCULAR CONTROL
EXERCISES

Upon return to sport after injury,
athletes should perform trunk stabili-
zation and neuromuscular control ex-
ercises at least 3–4 times per week.
These exercises may vary depending
on the sport that the athlete is return-
ing to but generally should involve
exercises that incorporate control of
trunk rotation, weight bearing, and
multiple angles of hip flexion. Such
exercises could include low to high
wood chops, high to low wood chops,
rotating core planks, physioball bridg-
ing with alternating leg holds and
alternating hip position, or single-leg
stand rotating reaches (Table 2) (see
Video, Supplemental Digital Con-
tent 2, http://links.lww.com/SCJ/A7,
labeled ‘‘Trunk Stabilization and Core
Control Exercises’’) (35,52).

ECCENTRIC EXERCISES

The eccentric contraction basis for
injury and the positive prophylactic
effect of eccentric training strongly
suggest that eccentric training should
be a component of a reconditioning
program upon return to sport. Alter-
native exercises, such as the eccentric
box drops, eccentric loaded lunge
drops, eccentric forward pulls, split-
stance Zerchers, and single-leg dead-
lifts, may be good alternatives to the
Nordic curls because these exercises
create biarticular muscle function in
a unilateral asymmetric fashion, similar
to that needed for sprinting and most
sport activities (Table 3) (see Video,
Supplemental Digital Content 3,
http://links.lww.com/SCJ/A8, labeled
‘‘Eccentric Training Exercises’’) (11).

SUMMARY

Given the frequency of hamstring
injuries and the high rate of injury
recurrence, successful recovery and
return to sport pose a great challenge
to the rehabilitation professional and
sports performance professional. Un-
derstanding the morphological and
functional effects of injury can help
optimize rehabilitation and recondi-
tioning strategies. As outlined in
this article, determining appropriate
readiness for sport, using an appropri-
ate dynamic warm-up program, in-
tegrating neuromuscular control and
trunk stabilization exercises into sports
performance programs, and the use of
functional eccentric strengthening
have shown potential to prevent a re-
current injury and keep athletes in the
game.
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